505 research outputs found

    Role of gravity waves in vertical coupling during sudden stratospheric warmings

    Full text link
    Gravity waves are primarily generated in the lower atmosphere, and can reach thermospheric heights in the course of their propagation. This paper reviews the recent progress in understanding the role of gravity waves in vertical coupling during sudden stratospheric warmings. Modeling of gravity wave effects is briefly reviewed, and the recent developments in the field are presented. Then, the impact of these waves on the general circulation of the upper atmosphere is outlined. Finally, the role of gravity waves in vertical coupling between the lower and the upper atmosphere is discussed in the context of sudden stratospheric warmings.Comment: Accepted for publication in Geoscience Letter

    Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere

    Full text link
    Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yi\u{g}it et al (2008). Simulations with GW effects cut-off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anti-correlation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.Comment: Accepted for publication in Journal of Geophysical Research - Space Physic

    Gravity waves and high-altitude CO2_2 ice cloud formation in the Martian atmosphere

    Full text link
    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO2_2 condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO2_2 ice clouds. Our study confirms the key role of GWs in facilitating CO2_2 cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.Comment: Accepted for publication in Geophysical Research Letters (GRL

    Seasonal Water "Pump" in the Atmosphere of Mars: Vertical Transport to the Thermosphere

    Full text link
    We present results of simulations with the Max Planck Institute general circulation model (MPI-MGCM) implementing a hydrological cycle scheme. The simulations reveal a seasonal water "pump" mechanism responsible for the upward transport of water vapor. This mechanism occurs in high latitudes above 60∘^\circ of the southern hemisphere at perihelion, when the upward branch of the meridional circulation is particularly strong. A combination of the mean vertical flux with variations induced by solar tides facilitates penetration of water across the "bottleneck" at approximately 60 km. The meridional circulation then transports water across the globe to the northern hemisphere. Since the intensity of the meridional cell is tightly controlled by airborne dust, the water abundance in the thermosphere strongly increases during dust storms.Comment: 15 pages, 4 figure

    Continuous Time-Delay Estimation From Sampled Measurements

    Full text link
    An algorithm for continuous time-delay estimation from sampled output data and known input of finite energy is presented. The continuous time-delay modeling allows for the estimation of subsample delays. The proposed estimation algorithm consists of two steps. First, the continuous Laguerre spectrum of the output signal is estimated from discrete-time (sampled) noisy measurements. Second, an estimate of the delay value is obtained in Laguerre domain given a continuous-time description of the input. The second step of the algorithm is shown to be intrinsically biased, the bias sources are established, and the bias itself is modeled. The proposed delay estimation approach is compared in a Monte-Carlo simulation with state-of-the-art methods implemented in time, frequency, and Laguerre domain demonstrating comparable or higher accuracy for the considered case

    Robust One-Step Estimation of Impulsive Time Series

    Full text link
    The paper deals with the estimation of a signal model in the form of the output of a continuous linear time-invariant system driven by a sequence of instantaneous impulses, i.e. an impulsive time series. This modeling concept arises in, e.g., endocrinology when episodic hormone secretion events and elimination rates are simultaneously estimated from sampled hormone concentration measurements. The pulsatile secretion is modeled with a train of Dirac impulses constituting the input to a linear plant, which represents stimulated hormone secretion and elimination. A previously developed one-step estimation algorithm effectively resolves the trade-off between data fit and impulsive input sparsity. The present work improves the algorithm so that it requires less manual tuning and produces more accurate results through the use of an information criterion. It is also extended to handle outliers and unknown basal levels that are commonly recognized issues in biomedical data. The algorithm performance is evaluated both theoretically and experimentally on synthetic and clinical data.Comment: 26 pages, 11 figure
    • …
    corecore